
Solving graph theory problems using
recon®gurable pipelined optical buses q

Keqin Li a, Yi Pan b, Mounir Hamdi c,*

a Department of Mathematics and Computer Science, State University of New York, New Paltz, NY 12561,

USA
b Department of Computer Science, University of Dayton, Dayton, OH 45469, USA

c Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay,

Kowloon, Hong Kong

Received 24 June 1999; accepted 10 November 1999

Abstract

We solve a number of important and interesting problems from graph theory on a linear

array with a recon®gurable pipelined optical bus system. Our algorithms are based on fast

matrix multiplication and extreme value ®nding algorithms, and are currently the fastest al-

gorithms. We also distinguish the two cases where weights have bounded/unbounded mag-

nitude and precision. Ó 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Graph algorithms; Pipelined communication; Recon®gurable networks; Optical computing

1. Introduction

It has been recognized that any important and interesting graph theory problems
can be solved based on matrix multiplication. A representative work is a parallel
matrix multiplication algorithm on hypercubes, which has time complexity O�log N�
on an N 3-processor hypercube for multiplying two N � N matrices [3]. By using this
algorithm, many graph problems can be solved in O��log N�2� time on an N 3-pro-
cessor hypercube. Since the summation of N values takes O�log N� time even on a
completely connected network, further reduction in the time complexity seems

Parallel Computing 26 (2000) 723±735

www.elsevier.com/locate/parco

q A preliminary version of the paper was presented in the Third Workshop on Optics and Computer

Science in Conjunction with IPPS/SPDP'99, San Juan, PR, 12±16 April 1999.
* Corresponding author. Tel.: +852-358-6984; fax: +852-358-1477.

E-mail address: hamdi@cs.ust.hk (M. Hamdi).

0167-8191/00/$ - see front matter Ó 2000 Published by Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 9) 0 0 1 2 6 - X

di�cult due to the limited communication capability of static networks used in
distributed memory multicomputers.

The performance of parallel algorithms on shared memory multiprocessors, e.g.,
PRAMs, can be much better. For instance, on a CRCW PRAM, a Boolean matrix
product can be calculated in constant time by using O�N 3� processors. This implies
that the transitive closure and many related problems of directed graphs can be
solved in O�log N� time by using N 3 processors [5]. Since a general matrix multi-
plication takes O�log N� time even on a PRAM, the all-pairs shortest problem
requires O��log N�2� time, no matter how many processors are used.

Using recon®gurable buses, a number of breakthroughs have been made. For
instance, a constant time algorithm for matrix multiplication on a recon®gurable
mesh was reported in [18]. However, the number of processors used is as many as N 4.
It is also known that the transitive closure as well as other related problems can be
solved in constant time on a recon®gurable mesh [20]. However, the algorithm only
works for undirected graphs, while the problem is de®ned on directed graphs.

The recent advances in optical interconnection networks have inspired a great
interest in developing new parallel algorithms for classic problems [9]. Pipelined
optical buses can support massive volume of data transfer simultaneously and realize
various communication patterns. An optical bus can also implement some global
operations such as calculating the summation and ®nding the extreme values of N
data items in constant time. Furthermore, an optical interconnection can be rec-
on®gured into many subsystems which can be used simultaneously to solve sub-
problems. The reader is referred to [10,16] for more detailed discussion on these
issues.

In this paper, we solve graph theory problems on the LARPBS (linear arrays with
recon®gurable pipelined bus system) computing model. (LARPBS was ®rst proposed
in [15,16], and a number of algorithms have been developed on LARPBS [4,7,8,10±
12,14,15,17].) We use matrix multiplication algorithms as subroutines. We show that
when the weights are real values with bounded magnitude and precision, the all-pairs
shortest paths problem for weighted directed graphs can be solved in O�log N� time
by using O�N 3� processors. If the weights have unbounded magnitude and precision,
the problem can be solved in O�log N� time with high probability by using O�N 3�
processors. The transitive closure problem for directed graphs can be solved in
O�log N� time by using O�N 3= log N� processors. Other related problems are also
discussed. These algorithms are currently the fastest.

2. Recon®gurable pipelined optical buses

A pipelined optical bus system uses optical waveguides instead of electrical signals
to transfer messages among electronic processors. In addition to the high propa-
gation speed of light, there are two important properties of optical pulse transmis-
sion on an optical bus, namely, unidirectional propagation and predictable
propagation delay. These advantages of using waveguides enable synchronized
concurrent accesses of an optical bus in a pipelined fashion [2,6]. Such pipelined

724 K. Li et al. / Parallel Computing 26 (2000) 723±735

optical bus systems can support a massive volume of communications simulta-
neously, and are particularly appropriate for applications that involve intensive
regular or irregular communication and data movement operations such as per-
mutation, one-to-one communication, broadcasting, multicasting, multiple multi-
casting, extraction and compression. It has been shown that by using the coincident
pulse addressing technique, all these primitive operations take O�1� bus cycles, where
the bus cycle length is the end-to-end message transmission time over a bus [10,16].

Remark. To avoid controversy, let us emphasize that in this paper, by``O�f �p�� time''
we mean O�f �p�� bus cycles for communication plus O�f �p�� time for local com-
putation.

In addition to supporting fast communications, an optical bus itself can be used as
a computing device for global aggregation. It was proven in [10,16] that by using N
processors, the summation of N integers or reals with bounded magnitude and
precision, the pre®x sums of N binary values, the logical-or and logical-and of N
Boolean values can be calculated in constant number of bus cycles.

A linear array with a recon®gurable pipelined bus system (LARPBS) consists of N
processors P1, P2; . . . ; PN connected by a pipelined optical bus. In addition to the
tremendous communication capabilities, an LARPBS can also be partitioned into
k P 2 independent subarrays LARPBS1, LARPBS2; . . ., LARPBSk, such that
LARPBSj contains processors Pijÿ1�1, Pijÿ1�2; . . . ; Pij , where 0 � i0 < i1 <i2 � � � < ik

� N . The subarrays can operate as regular linear arrays with pipelined optical bus
systems, and all subarrays can be used independently for di�erent computations
without interference (see [16] for an elaborated exposition).

The above basic communication, data movement, and aggregation operations
provide an algorithmic view on parallel computing using optical buses, and also
allow us to develop, specify, and analyze parallel algorithms by ignoring optical and
engineering details. These powerful primitives that support massive parallel com-
munications plus the recon®gurability of optical buses make the LARPBS com-
puting model very attractive in solving problems that are both computation and
communication intensive.

3. Matrix multiplication

The problem of matrix multiplication can be de®ned in a fairly general way. Let S
be a set of data with two binary operators � and
. Given two N � N matrices
A � �aij� and B � �bjk�, where aij 2 S, and bjk 2 S, for all 16 i; j; k6N , the product
C � AB � �cik� is de®ned as

cik � �ai1
 b1k� � �ai2
 b2k� � � � � � �aiN
 bNk�

for all 16 i; k6N .

K. Li et al. / Parallel Computing 26 (2000) 723±735 725

Several methods that parallelize the standard matrix multiplication algorithm
have been developed on LARPBS by using communication capabilities of optical
buses [10]. As a matter of fact, we can establish the following general result.

Lemma 1. The product of two N � N matrices can be calculated in O�T � time by using
N 2M processors, assuming that the aggregation x1 � x2 � � � � � xN can be calculated in
O�T � time by using M P 1 processors.

Appendix A gives the implementation details of the generic matrix multiplication
algorithm of Lemma 1. Compared with the results in [10], Lemma 1 is more general
in two ways. First, while only numerical and logical data are considered in [10],
Lemma 1 is applicable to arbitrary data set S and operations � and
. Second,
Lemma 1 covers a wide range of processor complexity. For example, if S contains
real numbers whose magnitude and precision are bounded, and
 and � are nu-
merical multiplication and addition, then the summation of N reals can be calculated
in O�N=M� time by M processors, where 16M 6N , which implies that matrix
multiplication can be performed in O�N=M� time by N 2M processors for all
16M 6N . In particular, matrix multiplication can be performed:
· in O�N� time by N 2 processors;
· in O�1� time by N 3 processors.

These results were developed in [10].
For Boolean matrices, where S is the set of truth values, and
 is the logical-and,

and � is the logical-or, a di�erent approach has been adopted. The method is to
parallelize the Four Russians' algorithm, with the following performance [7].

Lemma 2. The product of two N � N Boolean matrices can be calculated in O�1� time
by using O�N 3= log N� processors.

4. Finding extreme values

One instance of � is to ®nd the minimum of N data. This operation is used in
several graph problems.

Let S be the set of real values. The following result is obvious, since even the radix
sorting algorithm can be implemented on an LARPBS in constant time by using N
processors when the magnitude and precision are bounded [16].

Lemma 3A. The minimum value of N data with bounded magnitude and precision can
be found in O�1� time by using N processors.

When the reals have unbounded magnitude or precision, di�erent approaches are
required. One approach is to use more processors. It is obvious that by using N 2

processors, the minimum can be found in constant time by making all the possible
comparisons [17]. The method can be easily generalized to the following, using the
same method in PRAM [19].

726 K. Li et al. / Parallel Computing 26 (2000) 723±735

Lemma 3B. The minimum value of N data with unbounded magnitude and preci-
sion can be found in O�1� time by using N 1�d processors, where d > 0 is any small
constant.

By using the above method in Lemma 3B as a subroutine, the well-known doubly
logarithmic-depth tree algorithm [5] has been implemented on LARPBS, that can
®nd the minimum of N data in O�log log N� time by using N processors [16]. The
number of processors can easily be reduced by a factor of O�log log N�.

Lemma 3C. The minimum value of N data items with unbounded magnitude and
precision can be found in O�log log N� time, by using N=log log N processors.

The third method to handle general real values with unbounded magnitude and
precision is to use randomization, as shown by the following lemma [17,19].

Lemma 3D. The minimum value of N data with unbounded magnitude and precision
can be found in O�1� time with high probability (i.e., with probability 1ÿO�1=N a� for
some constant a > 0) by using N processors.

By Lemmas 1 and 3A±3D, we have:

Theorem 4. When � is the ``min'' operation, the product of two N � N matrices can be
calculated in O�1� time by using N 3 processors, if the matrix entries are of bounded
magnitude and precision. For matrix entries of unbounded magnitude and precision, the
problem can be solved:
· in O�1� time by using N 3�d processors;
· in O�log log N� time by using N 3=log log N processors;
· in O�1� time with high probability by using N 3 processors.

5. Repeated squaring

It turns out that to solve graph theory problems, we need to calculate the Nth
power of an N � N matrix A. This can be obtained by dlog Ne successive squaring,
i.e., calculating A2, A4, A8, and so on. Such a computation increases the time com-
plexities in Theorem 4 by a factor O�log N�.

Theorem 5. When � is the ``min'' operation, the Nth power of an N � N matrix can be
calculated in O�log N� time by using N 3 processors, if the matrix entries are of bounded
magnitude and precision. For matrix entries of unbounded magnitude and precision, the
problem can be solved:
· in O�log N� time by using N 3�d processors;
· in O�log N log log N� time by using N 3=log log N processors;
· in O�log N� time with high probability by using N 3 processors.

K. Li et al. / Parallel Computing 26 (2000) 723±735 727

The last claim in Theorem 5 needs more explanation. In one matrix multiplica-
tion, there are N 2 simultaneous computations of minimum values using the Monte
Carlo method in Lemma 3D. Since the algorithm in Lemma 3D has failure proba-
bility O�1=N a�, the failure probability of one matrix multiplication is
O�N 2=N a� � O�1=N aÿ2�. Since this Monte Carlo matrix multiplication is performed
for dlog�N ÿ 1�e times, the success probability of the all-pairs shortest paths com-
putation is

1

�
ÿO

1

N aÿ2

� ��log N

� 1ÿO
log N
N aÿ2

� �
� 1ÿO

1

N aÿ2ÿ�

� �
for any � > 0. The above argument implies that we need a (in Lemma 3D) to be no
less than, say, 3. Fortunately, this can be easily achieved because a Monte Carlo
algorithm which runs in O�T �N�� time with probability of success 1ÿO�1=N a� for
some constant a > 0 can be turned into a Monte Carlo algorithm which runs in
O�T �N�� time with probability of success 1ÿO�1=Nb� for any large constant b > 0
by running the algorithm for db=ae consecutive times and choosing a one that
succeeds without increasing the time complexity.

6. All-pairs shortest paths

Let G � �V ;E;W � be a weighted directed graph, where V � fv1; v2; . . . ; vNg is a set
of N vertices, E is a set of arcs, and W � �wij� is an N � N weight matrix, i.e., wij is
the distance from vi to vj if �vi; vj� 2 E, and wij � 1 if �vi; vj� 62 E. We assume that
the weights are real numbers, whose magnitude and precision can be bounded or
unbounded. The all-pairs shortest paths problem is to ®nd D � �dij�, an N � N
matrix, where dij is the length of the shortest path from vi to vj along arcs in E.

De®ne D�k� � �d�k�ij � to be an N � N matrix, where d�k�ij is the length of the shortest
path from vi to vj that goes through at most �k ÿ 1� intermediate vertices. It is clear
that D�1� � W , and D�k� can be obtained from D�k=2� by

d�k�ij � min
l

d�k=2�
il

�
� d�k=2�

lj

�
;

where k > 1, and 16 i; j; l6N . Such a computation can be treated as a matrix
multiplication problem D�k� � D�k=2�D�k=2�, where
 is the numerical addition oper-
ation �, and � is the ``min'' operation. It is also clear that D � D�Nÿ1�, so that we can
apply Theorem 5.

Theorem 6. The all-pairs shortest paths problem for a weighted directed graph with N
vertices can be solved in O�log N� time by using N 3 processors, if the weights are of
bounded magnitude and precision. For weights of unbounded magnitude and precision,
the problem can be solved:
· in O�log N� time by using N 3�d processors;
· in O�log N log log N� time by using N 3=log log N processors;
· in O�log N� time with high probability by using N 3 processors.

728 K. Li et al. / Parallel Computing 26 (2000) 723±735

6.1. Related problems

It is well known that [1,3] there are many other interesting graph theory problems
very closely related to the all-pairs shortest paths problem in the sense that the so-
lution to the all-pairs shortest paths problem can be used to easily assemble the
solutions to these problems. The following corollary gives a list of such problems,
and the reader is referred to [3] for more details of these problems. All these prob-
lems can be solved on LARPBS with the time and processor complexities speci®ed in
Theorem 6.

Corollary 7. All the following problems on a weighted directed graph with N vertices
can be solved with the same time and processor complexities in Theorem 6: radius,
diameter, and centers, bridges, median and median length, shortest path spanning tree,
breadth-first spanning tree, minimum depth spanning tree, least median spanning tree,
max gain, topological sort and critical paths.

7. Minimum weight spanning tree

Let G � �V ;E;W � be a weighted undirected graph, where V � fv1; v2; . . . ; vNg is a
set of N vertices, E is a set of edges, and W � �wij� is an N � N weight matrix, i.e.,
wij � wji is the cost of the edge fvi; vjg 2 E, and wij � 1 if fvi; vjg 62 E. It is assumed
that the edge costs are distinct, with ties broken using the lexicographical order. The
minimum weight spanning tree problem is to ®nd the unique spanning tree of G such
that the sum of costs of the edges in the tree is minimized.

It was shown in [13] that the minimum weight spanning tree problem can be
solved in the same way as that of the all-pairs shortest paths problem. Let the cost of
a path be the highest cost of the edges on the path. De®ne C�k� � �c�k�ij � to be an
N � N matrix, where c�k�ij is the shortest path from vi to vj that passes through at most
�k ÿ 1� intermediate vertices. Then, we have c�1�ij � wij, and

c�k�ij � min
l

max c�k=2�
il ; c�k=2�

lj

� �� �
for all k > 1, and 16 i; j; l6N . Such a computation can be treated as a matrix
multiplication problem C�k� � C�k=2�C�k=2�, where
 is the ``max'' operation, and � is
the ``min'' operation. Once C�Nÿ1� is obtained, it is easy to determine the tree edges,
namely, fvi; vjg is in the minimum weight spanning tree if and only if c�Nÿ1�

ij � wij.

Theorem 8. The minimum weight spanning tree problem for a weighted undirected
graph with N vertices can be solved in O�log N� time by using N 3 processors, if the
weights are of bounded magnitude and precision. For weights of unbounded magnitude
and precision, the problem can be solved:
· in O�log N� time by using N 3�d processors;
· in O�log N log log N� time by using N 3=log log N processors;
· in O�log N� time with high probability by using N 3 processors.

K. Li et al. / Parallel Computing 26 (2000) 723±735 729

The spanning tree problem for undirected graphs is a special case of the minimum
weight spanning tree problem in the sense that wij � wji � 1 for an edge fvi; vjg 2 E.
Since all the weights are of bounded magnitude, we have:

Theorem 9. The spanning tree problem for an undirected graph with N vertices can be
solved in O�log N� time by using N 3 processors.

8. Transitive closure

Let G � �V ;E� be a directed graph, and AG be the adjacency matrix of G, which is
an N � N Boolean matrix. Let A�G be the adjacency matrix of G's transitive closure.
By applying Lemma 2, the following result was shown in [7].

Theorem 10. The transitive closure of a directed graph with N vertices can be found in
O�log N� time by using O�N 3= log N� processors.

9. Strong components

A strong component of a directed graph G � �V ;E� is a subgraph G0 � �V 0;E0� of
G such that there is path from every vertex in V 0 to every other vertex in V 0 along arcs
in E0, and G0 is maximal, i.e., G0 is not a subgraph of another strong component of G.

To ®nd the strong components of G, we ®rst calculate A�G � �a�ij�, where a�ij � 1 if
there is a path from vi to vj, and a�ij � 0 otherwise. Then, vi and vj are in the same
component if and only if a�ij � a�ji � 1, for all 16 i; j6N . Based on A�G, we construct
C � �cij�, where cij � 1 if vi and vj are in the same component, and cij � 0 otherwise.
If the strong components are represented in such a way that every vertex vi re-
members the vertex vs�i� with the smallest index s�i� in the same component, then s�i�
is the minimum j such that cij � 1, where 16 j6N . The construction of C and the
®nding of the s�i�'s can be performed on an N 2-processor LARPBS in O�1� time.

Theorem 11. The strong components of a directed graph with N vertices can be found
in O�log N� time by using O�N 3= log N� processors.

The connected component problem for undirected graphs is just a special case of
the strong component problem for directed graphs.

Theorem 12. The connected components of an undirected graph with N vertices can be
found in O�log N� time by using O�N 3= log N� processors.

10. Summary and conclusions

We have considered fast parallel algorithms on the model of linear array with a
recon®gurable pipelined bus system for the following important graph theory
problems:

730 K. Li et al. / Parallel Computing 26 (2000) 723±735

· all-pairs shortest paths;
· radius, diameter, and centers;
· bridges;
· median and median length;
· shortest path spanning tree;
· breadth-®rst spanning tree;
· minimum depth spanning tree;
· least median spanning tree;
· max gain;
· topological sort and critical paths;
· minimum weight spanning tree;
· spanning tree;
· transitive closure;
· strong components;
· connected components.

Our algorithms are based on fast matrix multiplication and extreme value ®nding
algorithms, and are currently the fastest algorithms.

Acknowledgements

Keqin Li was supported by National Aeronautics and Space Administration and
the Research Foundation of State University of New York through NASA/Uni-
versity Joint Venture in Space Science Program under Grant NAG8-1313 (1996±
1999). Yi Pan was supported by the National Science Foundation under Grants
CCR-9211621 and CCR-9503882, the Air Force Avionics Laboratory, Wright
Laboratory, Dayton, OH, under Grant F33615-C-2218, and an Ohio Board of
Regents Investment Fund Competition Grant. Mounir Hamdi was partially sup-
ported by the Hong Kong Research Grant Council under the Grant HKUST6026/
97E.

Appendix A. Implementation details

We now present the implementation details of the generic matrix multiplication
algorithm of Lemma 1. The algorithm calculates the product C � AB � �cik� of two
N � N matrices A � �aij� and B � �bjk� in O�T � time by using N 2M processors, as-
suming that the aggregation x1 � x2 � � � � � xN can be calculated in O�T � time by
using M processors.

For convenience, we label the N 2M processors using triplets �i; j; k�, where
16 i; j6N , and 16 k6M . Processors P �i; j; k� are ordered in the linear array using
the lexicographical order. Let P �i; j; �� denote a group of consecutive processors
P �i; j; 1�; P �i; j; 2�; . . . ; P �i; j;M�. It is noticed that the original system can be recon-
®gured into N 2 subsystems, namely, the P�i; j; ��'s. Each processor P�i; j; k� has three
registers A�i; j; k�, B�i; j; k�, and C�i; j; k�.

K. Li et al. / Parallel Computing 26 (2000) 723±735 731

We start with the case where M P N . The input and output data layout are
speci®ed as follows. Initially, elements aij and bji are stored in registers A�1; i; j� and
B�1; i; j� respectively, for all 16 i; j6N . If we partition A into N row vectors A1,
A2; . . . ;AN , and B into N column vectors B1, B2; . . . ;BN ,

A �
A1

A2

..

.

AN

26664
37775; B � �B1;B2; . . . ;BN �;

then the initial data distribution is as follows:

P �1; 1; �� P �1; 2; �� � � � P �1;N ; ��
�A1;B1� �A2;B2� � � � �AN ;BN�;

where other processors are not shown here for simplicity, since they do not carry any
data initially. When the computation is done, cij is found in C�1; i; j�. If we divide C
into N row vectors C1;C2; . . . ;CN ,

C �
C1

C2

..

.

CN

26664
37775;

then the output layout is

P �1; 1; �� P �1; 2; �� � � � P �1;N ; ��
�C1� �C2� � � � �CN �:

Such an arrangement makes it easy for C to be used as an input to another com-
putation, e.g., repeated squaring.

The algorithm proceeds as follows. In Step (1), we change the placement of matrix
A in such a way that element aij is stored in A�i; 1; j�, for all 16 i; j6N . This can be
accomplished by a one-to-one communication. After such replacement, we have the
following data distribution:

P �1; 1; �� P �1; 2; �� � � � P �1;N ; ��
�A1;B1� �A2;B2� � � � �AN ;BN �

P �2; 1; �� P �2; 2; �� � � � P �2;N ; ��
�A2;ÿ� �ÿ;ÿ� � � � �ÿ;ÿ�

..

. ..
. . .

. ..
.

P �N ; 1; �� P �N ; 2; �� � � � P �N ;N ; ��
�AN ;ÿ� �ÿ;ÿ� � � � �ÿ;ÿ�:

732 K. Li et al. / Parallel Computing 26 (2000) 723±735

A Generic Matrix Multiplication Algorithm on LARPBS

for 16 i; j6N do in parallel //Step (1).One-to-one communica-

tion.

A�i; 1; j� A�1; i; j�
endfor

for 16 i; k6N do in parallel // Step (2).Multiple multicasting.

A�i; 2; k�;A�i; 3; k�; . . . ;A�i;N ; k� A�i; 1; k�
endfor

for 16 i; k6N do in parallel

B�2; j; k�;B�3; j; k�; . . . ;B�N ; j; k� B�1; j; k�
endfor

for 16 i; j; k6N do in parallel // Step (3).Local computation.

C�i; j; k� A�i; j; k�
 B�i; j; k�
endfor

for 16 i; j6N do in parallel // Step (4).Aggregation.

C�i; j; 1� C�i; j; 1� � C�i; j; 2� � � � � � C�i; j;N�
endfor

for 16 i6N ; 26 j6N ; do in parallel // Step (5).One-to-one com-

muni.

C�1; i; j� C�i; j; 1�
endfor

where the linear array of N 2M processors are logically arranged as a two-dimen-
sional N � N array, and each element in the array stands for a group of M processors
P �i; j; ��. The symbol ``ÿ'' means that the A and B registers are still unde®ned.

In Step (2), we distribute the rows of A and columns of B to the right processors,
such that processors P �i; j; �� hold Ai and Bj, for all 16 i; j6N . This can be per-
formed using multiple multicasting operations. After multicasting, the data distri-
bution is as follows:

P �1; 1; �� P �1; 2; �� � � � P �1;N ; ��
�A1;B1� �A1;B2� � � � �A1;BN �

P �2; 1; �� P �2; 2; �� � � � P �2;N ; ��
�A2;B1� �A2;B2� � � � �A2;BN �

..

. ..
. . .

. ..
.

P �N ; 1; �� P �N ; 2; �� � � � P �N ;N ; ��
�AN ;B1� �AN ;B2� � � � �AN ;BN �:

At this point, processors are ready to compute. In Step (3), P �i; j; k� calculates
aik
 bkj.

K. Li et al. / Parallel Computing 26 (2000) 723±735 733

Then, in Step (4), the values C�i; j; k�, 16 k6N , are aggregated by the M pro-
cessors in P �i; j; ��, for all 16 i; j6N , and the result cij is in C�i; j; 1�. Here, for the
purpose of multiple aggregations, the original system is recon®gured into N 2 sub-
systems P �i; j; ��'s, for 16 i; j6N . After calculation, the data distribution is as
follows:

P �1; 1; 1� P �1; 2; 1� � � � P �1;N ; 1�
�c11� �c12� � � � �c1N �

P �2; 1; 1� P �2; 2; 1� � � � P �2;N ; 1�
�c21� �c22� � � � �c2N �

..

. ..
. . .

. ..
.

P �N ; 1; 1� P �N ; 2; 1� � � � P �N ;N ; 1�
�cN1� �cN2� � � � �cNN �:

Finally, in Step (5), one more data movement via one-to-one communication brings
the cij's to the right processors.

It is clear that Steps (1)±(3) and (5) are simple local computations or primitive
communication operations, and hence, take O�1� time. Step (4) requires O�T � time.
Thus, the entire algorithm can be executed in O�T � time.

In general, when M P 1 and M 6N , to store a vector in a group P �i; j; �� of
consecutive processors P �i; j; 1�; P �i; j; 2�; . . . ; P �i; j;M�, we can divide a vector of
length N into sub-vectors of length dN=Me such that each processor P �i; j; k� is as-
signed a sub-vector. This increases the time of Steps (1)±(3) and (5) by a factor of
O�N=M�. Since T � X�N=M�, the complete algorithm still takes O�T � time.

References

[1] S.G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle River, NJ, 1997.

[2] D. Chiarulli, R. Melhem, S. Levitan, Using coincident optical pulses for parallel memory addressing,

IEEE Computer 30 (1987) 48±57.

[3] E. Dekel, D. Nassimi, S. Sahni, Parallel matrix and graph algorithms, SIAM Journal on Computing

10 (1981) 657±673.

[4] M. Hamdi, C. Qiao, Y. Pan, J. Tong, Communication-e�cient sorting algorithms on recon®gurable

array of processors with slotted optical buses, Journal of Parallel and Distributed Computing, to

appear.

[5] J. J�aJ�a, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.

[6] S. Levitan, D. Chiarulli, R. Melhem, Coincident pulse techniques for multiprocessor interconnection

structures, Applied Optics 29 (1990) 2024±2039.

[7] K. Li, Constant time boolean matrix multiplication on a linear array with a recon®gurable pipelined

bus system, Journal of Supercomputing 11 (4) (1997) 391±403.

[8] K. Li, V.Y. Pan, Parallel matrix multiplication on a linear array with a recon®gurable pipelined bus

system, in: Proceedings of the Second Merged Symposium of 13th International Parallel Processing

734 K. Li et al. / Parallel Computing 26 (2000) 723±735

Symposium and 10th Symposium on Parallel and Distributed Processing, San Juan, PR, April 1999,

pp. 31±35.

[9] K. LiY. Pan, S.-Q. Zheng, Parallel Computing Using Optical Interconnections, Kluwer Academic

Publishers, Boston, MA, 1998.

[10] K. Li, Y. Pan, S.-Q. Zheng, Fast and processor e�cient parallel matrix multiplication algorithms on a

linear array with a recon®gurable pipelined bus system, IEEE Transactions on Parallel and

Distributed Systems 9 (8) (1998) 705±720.

[11] K. Li, Y. Pan, S.-Q. Zheng, Parallel matrix computations using a recon®gurable pipelined optical bus,

Journal of Parallel and Distributed Computing 59 (1) (1999) 13±30.

[12] K. Li, Y. Pan, S.-Q. Zheng, E�cient deterministic and probabilistic simulations of PRAMs on linear

arrays with recon®gurable pipelined bus systems, Journal of Supercomputing 15 (2) (2000) 163±181.

[13] B.M. Maggs, S.A. Plotkin, Minimum-cost spanning tree as a path-®nding problem, Information

Processing Letters 26 (1988) 291±293.

[14] Y. Pan, M. Hamdi, E�cient computation of singular value decomposition on arrays with pipelined

optical buses, Journal of Network and Computer Applications 19 (1996) 235±248.

[15] Y. Pan, M. Hamdi, K. Li, E�cient and scalable quicksort on a linear array with a recon®gurable

pipelined bus system, Future Generation Computer Systems 13 (6) (1998) 501±513.

[16] Y. Pan, K. Li, Linear array with a recon®gurable pipelined bus system ± concepts and applications,

Journal of Information Sciences 106 (3±4) (1998) 237±258.

[17] Y. Pan, K. Li, S.-Q. Zheng, Fast nearest neighbor algorithms on a linear array with a recon®gurable

pipelined bus system, Journal of Parallel Algorithms and Applications 13 (1998) 1±25.

[18] H. Park, H.J. Kim, V.K. Prasanna, An O(1) time optimal algorithm for multiplying matrices on

recon®gurable mesh, Information Processing Letters 47 (1993) 109±113.

[19] S. Rajasekaran, S. Sen, Random sampling techniques and parallel algorithm design, in: J.H. Reif

(Ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann, Los Altos, CA, 1993, pp. 411±451.

[20] B.-F. Wang, G.-H. Chen, Constant time algorithms for the transitive closure and some related graph

problems on processor arrays with recon®gurable bus systems, IEEE Transactions on Parallel and

Distributed Systems 1 (1990) 500±507.

K. Li et al. / Parallel Computing 26 (2000) 723±735 735

